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Tachyonic Dark Matter
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Recent attempts to explain the dark matter and energy content of the universe have
involved some radical extensions of standard physics, including quintessence, phantom
energy, additional space dimensions, and variations in the speed of light. In this paper I
consider the possibility that some dark matter might be in the form of tachyons. I show
that, subject to some reasonable assumptions, a tachyonic cosmological fluid would
produce distinctive effects, such as a surge in quantum vacuum energy and particle
creation, and a change in the conventional temperature–time relation for the normal
cosmological material. Possible observational consequences are discussed.
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1. TACHYONS IN AN EXPANDING UNIVERSE

In this section I consider the behavior of a tachyon in an expanding universe,
following the treatment in Davies (1975). A tachyon is a particle with imaginary
massiµ (µ real and positive), velocityv > c, and momentum and energy given
in a local inertial frame by

p = µv(v2− 1)−1/2, (1.1)

E = µ(v2− 1)−1/2, (1.2)

where here and henceforth I choose units withc = h = 1. Consider such a particle
moving in a Friedmann–Roberston–Walker (FRW) universe with scale factora(t),
t being the cosmic time. In a short timedt, the particle will have moved a distance
v dt to a point where the local comoving frame is retreating at a speeddv =
(a′/a)v dt, wherea′ = da/dt. In this new frame, the tachyon will now have a
velocity

v + dv = [v − (a′/a)v dt]/[1− v2(a′/a) dt]. (1.3)

Note that becausev > 1 the velocity of the tachyon in the new comoving frame
is actuallygreater, i.e., the expansion of the universe causes the tachyon to speed
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up, rather than slow down, unlike the case with conventional particles of nonzero
rest mass (tardyons).

Equation (1.3) may be integrated to obtain

v = (1− a2/A2)1/2, (1.4)

whereA is a constant of integration. The energy of the tachyon is given by Eq. (1.2):

E = µ(A2/a2− 1)1/2, (1.5)

which falls as the universe expands, as expected. Results (1.4) and (1.5) may be
derived more formally by integrating the geodesic equation for a tachyon (Davies,
1975).

The constant of integrationA may be fixed by selecting an initial velocity or
energy for the tachyon. Imagine a homogeneous isotropic tachyon cosmological
fluid. For simplicity I shall assume the tachyons do not interact with each other
or with tardyons, but for consistency they must interact with gravitons. Strong
coupling to gravitons would have occurred only in the very early universe, and
one may posit that the tachyonic and graviton fluids would have been in thermo-
dynamic equilibrium. A plausible initial condition is thereforeE = EPlanckwhen
a = aPlanck. For these high energies Eq. (1.5) approximates toµA/a, which fixes

A = EPlanckaPlanck/µ. (1.6)

Another case of interest is that the tachyons are created with GUT energies during
the reheating of the universe at the end of an inflationary era. In that case

A = EGUTareheating/µ. (1.7)

From Eqs. (1.4) and (1.5) it is apparent that whena→ A the velocity of the
tachyon approaches infinity and the energy tends to zero. In effect, the tachyon
disappears from the universe. This may be interpreted (Davies, 1975) as a tachyon–
antitachyon annihilation event with zero energy released. When will this disap-
pearing act occur? A rough estimate may be made by treating the universe as
radiation-dominated, in which casea(t) ∝ t1/2, and Eqs. (1.6) and (1.7) yield, in
both cases,

tdisappearance≈ 1013 s/[µ(eV)]2. (1.8)

Of course, we have no idea what the imaginary mass of the tachyon might be. If
µ ∼proton mass,tdisappearance∼ 10−5 s. At the other extreme, ifµ ∼neutrino mass,
perhaps as low as 1 eV, thentdisappearance∼ 106 years, i.e., the tachyon disappearance
takes place during the cosmic “dark age” after photon decoupling and before star
formation.

If tachyons were to form a component of dark matter at the current epoch, it
is clear thatµ would have to be exceedingly small, say< 10−3 eV. But from (1.2)
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we see thatE < µc2, so the total energy density of tachyons would then be

ρtachyons< nµ, (1.9)

wheren is the number density of tachyons. If there areN distinct species of
tachyons with sufficiently lowµ in the cosmological fluid, and all were in thermo-
dynamic equilibrium with the universe at the Planck time, thenn ∼ N× Number
density of gravitons, and

ρtachyons< Nρgravitons< Nρphotons (1.10)

as the graviton background is suppressed relative to the photon background
(Weinberg, 1972). Obviouslyρtachyonsis negligible unlessN is a very large num-
ber, say> 106, which seems unreasonable. So we may conclude that tachyons will
constitute a negligible fraction of the dark matter at this epoch, unless either (i)
N is much larger than for tardyons or, (ii)n is determined not by a condition of
early thermodynamic equilibrium, but by some other criterion. Because tachyons
enter our region of the universe on spacelike trajectories, they are not subject to
the normal cosmological initial conditions, so we are free to posit alternatives to
the ansatz (1.6) or (1.7). In the absence of a theory of tachyon formation, however,
there is nothing much we can say about these alternatives.

2. COSMOLOGICAL DYNAMICS

The presence of a tachyon fluid will modify the dynamics of the FRW model.
For simplicity I shall restrict attention to thek = 0 (spatially flat) case. The scale
factora(t) satisfies the FRW equations

a′2/a2 = 8πGρ , (2.1)

2a′′/a+ (a′/a)2 = −8πGp. (2.2)

Assuming for the moment that the tachyons all have the same energy at the same
cosmic timet in their local comoving frame, the energy density will be given from
Eq. (1.5) by

ρtachyons= nµ(A2/a2− 1)1/2. (2.3)

If the universe contained only tachyons, then Eqs. (2.1) and (2.3) yield

Ct = 1− (1− a2/A2)3/4, (2.4)

whereC is a constant of integration determined by the total energy density. For
smalla, the universe resembles a radiation-filled FRW model witha ∝ t1/2. But
at a = A, t = 1/C, the tachyons disappear, and the universe becomes a patch of
Minkowski space thereafter. This discontinuity is less abrupt than might appear
at first sight, becauseρtachyons→ 0 there; indeed, from Eq. (2.1) or (2.3) one sees
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that a′/a→ 0. However, Eq. (2.4) reveals an infinite discontinuity ina′′ at the
vanishing pointa = A:

a′′/a→ −(C/3)(1− a2/A2)−3/4, t < 1/C

= 0 t > 1/C. (2.5)

It follows from Eq. (2.2) that the divergence ina′′/a at a = A corresponds to
an infinite momentary pressure when the tachyons disappear. The source of this
divergence can be traced to the behavior of the tachyons’ momentum as the zero-
energy condition is approached. From Eq. (1.1) it is clear thatp remains finite
(→µ) asv→∞ and E→ 0. Thus there is an infinite flux of momentum. One
may also deduce the same result from the conservation of energy condition

p da3+ d(ρa3) = 0, (2.6)

using Eq. (2.3). This behavior also implies a discontinuity in the scalar curvature
R, given here by

R= 6(a′2/a2+ a′′/a). (2.7)

In a more realistic case the cosmological fluid will have both tachyonic and
nontachyonic components. If the initial energy density ratio is

ρtachyons/ρradiation= α (2.8)

then in place of Eq. (2.5) one obtains

Ct = [2− α(1− a2/A2)1/2][1 + α(1− a2/A2)1/2]1/2

− (2− α)(1+ α)1/2 a < A

= (3α2/4)(a2/A2− 1)+ 2− (2− α)(1+ α)1/2 a > A. (2.9)

The same general features are found:a ∝ t1/2 at early times, followed by a
deviation from the standard FRW behavior, culminating in an abrupt disappear-
ance of the tachyons ata = A, standard FRW behavior thereafter, and an infinite
discontinuity ina′′/a.

The assumption that all the tachyons have the same energy at any givent is
obviously unrealistic. If the tachyonic fluid were in thermodynamic equilibrium
with the universe at the Planck time, the energies would be distributed with a
thermal spectrum. This translates into a distribution of values ofA, which has the
effect of smearing the infinite discontinuity ina′′/a andR. Nevertheless, there will
still be a large increase ina′′/a andR, which prompts the question of whether or
not this will produce observable effect.
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3. QUANTUM FLASH

The abrupt behavior ina′′/a at a = A may not be important for the cosmo-
logical dynamics (the Hubble constant remains continuous there), but it does have
an effect on the state of the quantum vacuum. In particular, it can produce a burst
of particle creation. To illustrate this phenomenon, I consider a massless scalar
field ϕ propagating in ak = 0 FRW universe. Suppose the field is initially in the
conformal vacuum state (Birrell and Davies, 1982). Using first order perturbation
theory, the number density of created particles is given by (Birrell and Davies,
1982, Eq. (5.118))

nφ = (9/4πa3)(ξ − 1/6)2
∫

(aa′2+ a2a′′)2dt, (3.1)

whereξ is the conformal coupling parameter, andt runs over a range of values
from the “in” region where the vacuum is defined to the “out” region where the
particles are examined. Using the solution (2.4) for the scale factor, substituting
da/a′ for dt and choosing a range of integration that includes the instant of tachyon
disappearance ata = A, one finds that the integral in Eq. (3.1) diverges like (1−
a2/A2)−1/4 asa→ A. This result suggests that the tachyon disappearance induces
dramatic effects in the quantum vacuum of the scalar field—a “quantum flash”—
the formal divergence being quenched by the smearing inA values implicit in
assuming a thermal distribution of tachyons.

Before drawing general conclusions, however, three points must be made.
First, the use of perturbation theory is obviously inconsistent witha′′ → ∞, so
Eq. (3.1) may understate the particle creation effect. The extent to which this is the
case will depend on the assumptions made about the smearing ofA values required
by demanding a distribution of initial tachyon energies. Second, if the parameter
ξ is chosen to make the scalar field conformally invariant, corresponding most
closely to, say, the electromagnetic field, thenξ = 1/6 and the right hand side
of Eq. (3.1) vanishes. So the burst of particle production requires the breaking of
conformal symmetry. In a more realistic model, conformal symmetry might be
broken even whenξ = 1/6 by taking into account departures from homogeneity
and isotropy in the disappearance of the tachyons. But this is a different and more
complicated calculation.

Finally, the strength of the divergence in the integral in Eq. (3.1) is due in
part to the artificiality of the model based on Eq. (2.4), which assumes a universe
containing only tachyons. This requires thata′ = 0 ata = A, which introduces a
factor (1− a2/A2)−1/4 in the integrand arising from the substitutiondt = da/a′.
If normal matter is also present, thena′ 6= 0 ata = A, and the divergence will be
only logarithmic. This may be verified for the more realistic model solution (2.9)
where, to leading order

nφ = (C3/a3)(ξ − 1/6)2[β + γ ln(1− a/A)], (3.2)
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whereβ andγ and constants ofO(1), and the argument of the logarithm is to
be evaluated in the limita→ A. Assuming one can justify a cutoff in the log-
arithmic divergence at physically meaningful values (e.g., an uncertainty ina(t)
corresponding to a Planck time uncertainty int), then to within a couple of orders
of magnitude

nφ ∼ C3 ∼ t3, (3.3)

where I have evaluated the 1/a3 factor in Eq. (3.1) shortly aftera = A, and used
Eq. (2.9) fora > A to substitute forC, assumingα is O(1). Equation (3.3) is
far less dramatic, corresponding roughly to a few particles created per particle
horizon volume. This means fort À tPlanck, nφ ¿ density of preexisting particles.
The stronger divergence found from using solution (2.4), which suggests a universe
saturated with created particles, seems to be an artefact of the simplistic tachyon-
only solution.

It is instructive to examine the change in the scalar field energy density around
the abrupt tachyon disappearance. This is given by (Birrell and Davies, 1982,
Eq. (6.166))

ρ(t2)a(t2)− ρ(t1)a(t1) = −
∫ t2

t1

a3
〈
Tv

v

〉
dt, (3.4)

where〈Tv
v 〉 is the trace of the expectation value of the stress–energy–momentum

tensor of the scalar field evaluated in the conformal vacuum. The right hand side
of Eq. (3.4) is proportional to (ξ − 1/6)2R2 and so will diverge if Eq. (2.9) is
used to evaluateR, with ξ 6= 1/6. If a smearing assumption is made then, to first
approximation, the energy density of created particles will be given bynφω, where
Eq. (3.2) is used fornφ andω is a characteristic frequency given by the inverse of
the smearing time scale. Of greater interest is the fact that the right hand side of
Eq. (3.4) is nonzero even in the case of conformal coupling,ξ = 1/6, on account
of the conformal trace anomaly. Indeed, the integral in Eq. (3.4) may be performed
explicitly (Birrell and Davies, 1982, Eq. (6.171)) to give

3Ea′4+ 12F(−a2a′a′′′ − aa′2a′′ + a2a′′2/2+ 3a′4/2), (3.5)

where the numerical coefficients areE = (2880π2)−1 and F = −(17280π2)−1.
This expression diverges like (1− a2/A2)−3/2 asa→ A, representing an intense
surge of vacuum energy, even though in this case there is no particle production.
(The peak value of this energy will be determined by the form of the smearing
function assumed forA.) Once the tachyons have disappeared, this vacuum energy
falls back to a negligible value∼ t−2.
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4. EVENT HORIZON BEHAVIOR

A realistic cosmological model would involve nonzero dark energy in addition
to the assumed tachyons and conventional matter and radiation. If a cosmologi-
cal constant term is introduced into the Friedmann equations (2.1) and (2.2), the
possibility arises of a cosmological event horizon. To investigate what effect the
tachyons have on the dynamics of the horizon, I shall consider here a simplified
model in which normal matter and radiation are absent. A comprehensive discus-
sion of cosmological event horizons in the context of the generalised second law
of thermodynamics has been given by Davis and Davies (2003), and Davieset al.
(2003).

The radius of the horizon is defined for spatially flat FRW models by

Rh = a(t)
∫ ∞

t
dt/a(t) = a(t)

∫ ∞
a

da/aa′, (4.1)

where the scale factora(t) is a solution of the Friedmann equation (2.1), augmented
by a cosmological constant3:

a′2/a2 = 3/3+ 8πGρtachyons= 3/3+ (α/a4)(1− a2/A2)1/2 a < A

= 3/3 a > A, (4.2)

where againα is a constant that determines the total energy density of tachyons.
Equation (4.2) cannot be integrated in terms of simple functions, so I shall consider
the approximationa→ A. Taking the square root of Eq. (4.2) and substituting into
Eq. (4.1) yields, in this approximation,

Rh ≈ (3/3)1/2− (3/3)3/2(α/2)
∫ A

a
a−6(1− a2/A2)1/2da a < A

= (3/3)1/2 a > A. (4.3)

Performing the integral in Eq. (4.3), and puttinga ≈ A, one obtains

Rh ≈ (3/3)1/2− (3/3)3/2 (α/6)(1− a2/A2)3/2 a < A

= (3/3)1/2 a > A. (4.4)

The term (3/3)1/2 is the usual de Sitter horizon radius. The other term represents
a reduction in horizon area caused by the tachyon fluid.

It follows that

R′h ≈ (α/2A)(1− a2/A2)1/2 > 0, (4.5)

in conformity with the generalised second law of thermodynamics, in spite of
the fact that tachyons themselves transcend this law by traversing event horizons.
Perhaps more surprisingly,R′h→ 0 smoothly asa→ A, even though the pressure
diverges there.
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5. CONCLUSIONS AND OBSERVABLE CONSEQUENCES

Although tachyons reamain extremely conjectural, the analysis presented
here reveals no unphysical or pathological consequences for cosmological theory
if some component of dark matter is in the form of a uniform tachyonic fluid. Even
the generalised second law of thermodynamics applied to cosmological horizons
remains valid. The central result—that tachyons disappear abruptly due to the
expansion of the universe—probably limits their putative influence to the early or
very early universe.

Can the presence of a tachyonic background lead to observable cosmological
effects? In this paper I have limited my attention to the abrupt (formally divergent)
behaviour ofa′′ and R caused by the sudden disappearance of the tachyons. I
showed that this discontinuity is associated with quantum particle production, but
that the density of created scalar particles was very low as long as the tachyonic
fluid is considered homogeneous and isotropic. It seems likely, however, that ir-
regularities in the tachyon background would lead to local “hot spots” of particle
creation that might have observable consequences. Stronger effects were found to
be associated with the vacuum energy, even in the case of conformal symmetry
as might apply, for example, to photons. But this effect is transient, limited to the
epoch of tachyon disappearance.

I have not considered here the classical effects of a divergingR, such as the
impact on gravitational density perturbations, or the back reaction of the tachyon
fluid’s rapidly changing energy and pressure on the cosmological dynamics. In
particular, it is not obvious whether the gravitational back reaction will serve
to homogenize or inhomogenize the tachyonic fluid. Ifµ ∼ electron mass, as
might seem reasonable on symmetry grounds, thena = A at about 1 s. If∼50%
of the energy density of the universe evaporates in the first 1 s of expansion in a
phase transition involving escalating values ofp andR, possibly inhomogeneously
distributed, the effects on the density spectrum of normal matter and radiation
could be important. It is possible that the tachyons would imprint a distinctive
fluctuation spectrum on the universe that might be detectable in future cosmic
microwave background measurements.

A major uncertainty in this analysis is the energy distribution of the tachyons,
which would have the effect of smearing the abrupt behaviour neara = A. In the
absence of a proper theory of tachyon interactions, or a defensible ansatz about the
tachyons’ origin or initial energy distribution, this aspect must remain conjectural.

Probably the most important consequence of a tachyonic component of dark
matter is the effect on the dynamics of the early universe, with concomitant impli-
cations for primordial nucleosynthesis. The relationship between temperature and
time for a standard radiation-dominated FRW model universe is

T ∝ (N)1/4t−1/2, (5.1)
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whereN now denotes the total number of all relativistic particle species. If half the
particle species in the early universe were tachyonic, then the temperature would
be suppressed by a factor 1.19 relative to a model with no tachyons.

Finally, I should point out that in this paper I have treated the tachyons in
a standard manner as a classical background fluid. Recently, results from string
theory have suggested the possible existence of quantum fields with tachyonic
terms in the Lagrangian. Some attention has been given to possible cosmological
consequences of such a field (Baglaet al., 2003; Gibbons, 2003). There does not
seem to be any direct connection between this work and the foregoing.
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